skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Du, Zongliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With the rapid developments of advanced manufacturing and its ability to manufacture microscale features, architected materials are receiving ever increasing attention in many physics fields. Such a design problem can be treated in topology optimization as architected material with repeated unit cells using the homogenization theory with the periodic boundary condition. When multiple architected materials with spatial variations in a structure are considered, a challenge arises in topological solutions, which may not be connected between adjacent material architecture. This paper introduces a new measure, connectivity index (CI), to quantify the topological connectivity, and adds it as a constraint in multiscale topology optimization to achieve connected architected materials. Numerical investigations reveal that the additional constraints lead to microstructural topologies, which are well connected and do not substantially compromise their optimalities. 
    more » « less